Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
2.
Eur J Med Res ; 28(1): 387, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770960

RESUMO

Over the two last decades, whole-body cryotherapy/cryostimulation (WBC) has emerged as an exciting non-pharmacological treatment influencing inflammatory events at a cellular and physiological level, which can result in improved sleep quality, faster neuromuscular recovery after high-intensity exercise, and chronic pain relief for patients suffering different types of diseases (fibromyalgia, rheumatism, arthritis). Some evidence even suggests that WBC has benefits on mental health (depression, anxiety disorders) and cognitive functions in both adults and older adults, due to increased circulating BDNF levels. Recently, some safety concerns have been expressed by influential public health authorities (e.g., FDA, INSERM) based on reports from patients who developed adverse events upon or following WBC treatment. However, part of the data used to support these claims involved individuals whose entire body (except head) was exposed to extreme cold vaporized liquid nitrogen while standing in a narrow bathtub. Such a procedure is known as partial-body cryotherapy (PBC), and is often erroneously mistaken to be whole-body cryotherapy. Although having similarities in terms of naming and pursued aims, these two approaches are fundamentally different. The present article reviews the available literature on the main safety concerns associated with the use of true whole-body cryotherapy. English- and French-language reports of empirical studies including case reports, case series, and randomized controlled trials (RCTs) were identified through searches of PubMed, Scopus, Cochrane, and Web of Science electronic databases. Five case reports and two RCTs were included for a total of 16 documented adverse events (AEs). A critical in-depth evaluation of these AEs (type, severity, context of onset, participant's medical background, follow-up) is proposed and used to illustrate that WBC-related safety risks are within acceptable limits and can be proactively prevented by adhering to existing recommendations, contraindications, and commonsense guidelines.


Assuntos
Crioterapia , Exercício Físico , Humanos , Idoso , Crioterapia/efeitos adversos , Crioterapia/métodos
3.
Int J Sports Physiol Perform ; 18(10): 1196-1205, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37536677

RESUMO

PURPOSE: Short-track speed skating race distances of 500, 1000, and 1500 m that last ∼40 seconds to ∼2.5 minutes and require a maximal intensity at speeds beyond maximal oxygen uptake (VO2max). Recently, the anaerobic speed reserve (ASR) has been applied by scientists and coaches in middle-distance sports to deepen understanding of 1- to 5-minute event performance where different physiological profiles (speed, hybrid, and endurance) can have success. METHODS: World-class (women, n = 2; men, n = 3) and international-level (women, n = 4; men, n = 5) short-track speed skaters completed maximal aerobic speed and maximal skating speed tests. ASR characteristics were compared between profiles and associated with on-ice performance. RESULTS: World-class athletes raced at a lower %ASR in the 1000- (3.1%; large; almost certainly) and 1500-m (1.8%; large; possibly) events than international athletes. Men's and women's speed profiles operated at a higher %ASR in the 500-m than hybrid and endurance profiles, whereas in the 1500-m, endurance profiles worked at a substantially lower %ASR than hybrid and speed profiles. Women's 500-m performance is very largely associated with maximal skating speed, while women's maximal aerobic speed appears to be a key determining factor in the 1000- and 1500-m performance. CONCLUSION: World-class short-track speed skaters can be developed in speed, hybrid, and endurance profiles but achieve their performance differently by leveraging their strongest characteristics. These results show nuanced differences between men's and women's 500-, 1000- and 1500-m event performance across ASR profile that unlock new insights for individualizing athlete performance in these disciplines.


Assuntos
Desempenho Atlético , Patinação , Masculino , Humanos , Feminino , Patinação/fisiologia , Anaerobiose , Desempenho Atlético/fisiologia , Atletas
4.
Int J Sports Physiol Perform ; 18(7): 711-717, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37185453

RESUMO

PURPOSE: In short-track speed skating, athletes need to possess specific physiological capabilities to perform explosive starts and to finish races with faster lap times than their opponents. Repeated-sprint training in hypoxia (RSH) can enhance repeated-sprint ability and high-intensity performance. This study aimed to evaluate the relationship between on- and off-ice performance indicators for training and testing purposes and how these are optimized with RSH in world-class short-track speed skaters including world and Olympic champions. METHODS: RSH training was administered for 3 consecutive weeks, 3 times per week, at 3500 m of simulated altitude. Testing sessions (on-ice: 3-lap, 27-lap; off-ice: cycling incremental test, 7-s and 30-s Wingate) were performed immediately before and 2 and 4 weeks after RSH to determine the time course of decay. RESULTS: On-ice top speed showed a small and possibly beneficial change of ∼0.9% for the women and large and almost certain ∼0.7% improvement for the men 2 weeks post-RSH. Cycling peak power showed a moderate and probable ∼5.4% improvement for the men 2 weeks after RSH. These adaptations reverted to baseline 4 weeks post-RSH. Wingate average power showed a small and possibly beneficial gain (∼3.4%) in performance 4 weeks post-RSH. CONCLUSION: Although scientific controls could not be added due to the extremely high caliber of these athletes and low sample size of the national team, this study suggests that cycling RSH can be added immediately after on-ice training and can transfer into meaningful improvements on the ice in both male and female skaters.


Assuntos
Desempenho Atlético , Patinação , Feminino , Humanos , Masculino , Desempenho Atlético/fisiologia , Hipóxia , Gelo , Patinação/fisiologia
5.
Eur J Appl Physiol ; 123(9): 1895-1909, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37088821

RESUMO

PURPOSE: This study aimed to investigate the effect of whole-body cryotherapy (WBC), cold-water immersion (CWI) and passive recovery (PAS) on tennis recovery. METHODS: Thirteen competitive male tennis players completed three consecutive match-like tennis protocols, followed by recovery (WBC, CWI, PAS) in a crossover design. Five tennis drills and serves were performed using a ball machine to standardize the fatiguing protocol. Maximal voluntary contraction (MVC) peak torque, creatine kinase activity (CK), muscle soreness, ball accuracy and velocity together with voluntary activation, low- and high-frequency torque and EMG activity were recorded before each protocol and 24 h following the third protocol. RESULTS: MVC peak torque (- 7.7 ± 11.3%; p = 0.001) and the high- to low-frequency torque ratio (- 10.0 ± 25.8%; p < 0.05) decreased on Day 1 but returned to baseline on Day 2, Day 3 and Day 4 (p = 0.052, all p > 0.06). The CK activity slightly increased from 161.0 ± 100.2 to 226.0 ± 106.7 UA L-1 on Day 1 (p = 0.001) and stayed at this level (p = 0.016) across days with no differences between recovery interventions. Muscle soreness increased across days with PAS recovery (p = 0.005), while no main effect of time was neither observed with WBC nor CWI (all p > 0.292). The technical performance was maintained across protocols with WBC and PAS, while it increased for CWI on Day 3 vs Day 1 (p = 0.017). CONCLUSION: Our 1.5-h tennis protocol led to mild muscle damage, though neither the neuromuscular function nor the tennis performance was altered due to accumulated workload induced by consecutive tennis protocols. The muscle soreness resulting from tennis protocols was similarly alleviated by both CWI and WBC. TRIAL REGISTRATION: IRB No. 2017-A02255-48, 12/05/2017.


Assuntos
Mialgia , Tênis , Humanos , Masculino , Mialgia/terapia , Músculo Esquelético/fisiologia , Imersão , Crioterapia/métodos , Água , Temperatura Baixa
6.
Front Sports Act Living ; 4: 896828, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911375

RESUMO

Injuries limit the athletes' ability to participate fully in their training and competitive process. They are detrimental to performance, affecting the athletes psychologically while limiting physiological adaptations and long-term development. This study aims to present a framework for developing random forest classifier models, forecasting injuries in the upcoming 1 to 7 days, to assist the performance support staff in reducing injuries and maximizing performance within the Canadian National Female Short-Track Speed Skating Program. Forty different variables monitored daily over two seasons (2018-2019 and 2019-2020) were used to develop two sets of forecasting models. One includes only training load variables (TL), and a second (ALL) combines a wide array of monitored variables (neuromuscular function, heart rate variability, training load, psychological wellbeing, past injury type, and location). The sensitivity (ALL: 0.35 ± 0.19, TL: 0.23 ± 0.03), specificity (ALL: 0.81 ± 0.05, TL: 0.74 ± 0.03) and Matthews Correlation Coefficients (MCC) (ALL: 0.13 ± 0.05, TL: -0.02 ± 0.02) were computed. Paired T-test on the MCC revealed statistically significant (p < 0.01) and large positive effects (Cohen d > 1) for the ALL forecasting models' MCC over every forecasting window (1 to 7 days). These models were highly determined by the athletes' training completion, lower limb and trunk/lumbar injury history, as well as sFatigue, a training load marker. The TL forecasting models' MCC suggests they do not bring any added value to forecast injuries. Combining a wide array of monitored variables and quantifying the injury etiology conceptual components significantly improve the injury forecasting performance of random forest models. The ALL forecasting models' performances are promising, especially on one time windows of one or two days, with sensitivities and specificities being respectively above 0.5 and 0.7. They could add value to the decision-making process for the support staff in order to assist the Canadian National Female Team Short-Track Speed Skating program in reducing the number of incomplete training days, which could potentially increase performance. On longer forecasting time windows, ALL forecasting models' sensitivity and MCC decrease gradually. Further work is needed to determine if such models could be useful for forecasting injuries over three days or longer.

7.
J Strength Cond Res ; 35(Suppl 2): S111-S118, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34846332

RESUMO

ABSTRACT: Dong, L, Paradelo, D, Delorme, A, Oliveira, J, Parillo, B, Croteau, F, Romeas, T, Dubé, E, Bieuzen, F, Billaut, F, and Berryman, N. Sport-specific agility and change of direction in water polo: The reliability and validity of two newly developed tests. J Strength Cond Res 35(12S): S111-S118, 2021-There is a gap in water-based agility testing that considers both the change-of-direction (COD) and perceptive-reactive components of agility. This study sought to develop easily implementable, sport-specific in-water agility tests for water polo and to verify the reliability and validity of these new tests: the in-water Stop and Go (SG) and Jump and Go (JG). Female water polo athletes at the Senior (n = 12, age = 22.1 ± 2.1 years), Junior (n = 19, age = 18.5 ± 1.0 years), and Youth (n = 11, age = 16.5 ± 0.8 years) national levels performed 3 trials of each of the SG, JG, and the existing Functional Test for Agility Performance (FTAP). Senior athletes performed an additional experimental session to assess reliability parameters. Relative reliability for agility and COD versions of the SG and JG was high or very high (intraclass correlation coefficient [ICC] = 0.76-0.95). For construct validity analyses, significant between-group differences for each of the new tests (p < 0.05) were found. In contrast, the FTAP was moderately reliable (ICC = 0.57) and was unsuccessful in discriminating between playing levels. Considering the favorable metrological properties of the SG and JG, their fidelity to in-game demands, and their accessible setups, these new tests represent viable options to implement at grassroots and elite levels for the assessment and training of water polo-specific agility.


Assuntos
Desempenho Atlético , Esportes Aquáticos , Adolescente , Adulto , Atletas , Etnicidade , Teste de Esforço , Feminino , Humanos , Reprodutibilidade dos Testes , Adulto Jovem
8.
Eur J Appl Physiol ; 121(10): 2743-2759, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34145486

RESUMO

PURPOSE: To assess the performance change and physiological adaptations following nine sessions of short high-intensity interval training (HIIT) or sprint-interval training (SIT) in sprint kayakers. METHODS: Twelve trained kayakers performed an incremental test and 3 time trials (200 m, 500 m and 1000 m) on a kayak ergometer. Oxygen consumption (V̇O2) and muscle oxygenation of the latissimus dorsi, biceps brachii, and vastus lateralis were measured. Athletes were then paired for sex and V̇O2max and randomized into a HIIT or a SIT training group, and performed nine training sessions before repeating the tests. RESULTS: Training improved performance in HIIT (200 m: + 3.8 ± 3.1%, p = 0.06; 500 m: + 2.1 ± 4.1%, p = 0.056; 1000 m: + 3.0 ± 4.6%, p = 0.13) but changes in performance remained within the smallest worthwhile change in SIT (200 m: + 0.8 ± 4.1%, p = 0.59; 500 m: + 0.5 ± 4.1%, p = 0.87; 1000 m: + 1.3 ± 4.6%, p = 0.57). In the 1000 m, training led to a greater deoxygenation in the biceps brachii and vastus lateralis in HIIT, and in the latissimus dorsi in SIT. In HIIT, the best predictors of improvements in 1000 m performance were increases in latissimus dorsi and vastus lateralis maximal deoxygenation. CONCLUSION: In a group of trained sprint kayakers, greater improvements in performance can be obtained with HIIT compared with SIT, for any distance. Training did not change V̇O2peak, but increased muscle maximal deoxygenation, suggesting both HIIT and SIT elicit peripheral adaptations. Performance improvement in the 1000 m was associated with increased maximal muscle deoxygenation, reinforcing the contribution of peripheral adaptations to performance in sprint kayaking.


Assuntos
Desempenho Atlético/fisiologia , Treinamento Intervalado de Alta Intensidade , Músculo Esquelético/fisiologia , Consumo de Oxigênio/fisiologia , Esportes Aquáticos/fisiologia , Adaptação Fisiológica/fisiologia , Adolescente , Adulto , Teste de Esforço/métodos , Treinamento Intervalado de Alta Intensidade/métodos , Humanos , Oxigênio/metabolismo , Corrida/fisiologia , Adulto Jovem
10.
Front Sports Act Living ; 3: 745765, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34977567

RESUMO

In regular times, implementing exercise-based injury prevention programs into the training routine of high-level and professional athletes represents a key and challenging aspect to decrease injury risk. Barriers to implementing such prevention programs have previously been identified such as lack of resources, logistic issues or motivation. The COVID-19 pandemic associated with restrictions on daily life dramatically impacted sports participation from training to competition. It is therefore reasonable to assume that such lockdown-like context has exacerbated the challenge to implement exercise-based injury prevention programs, potentially leading to a greater musculoskeletal injury risk. In this narrative review, recommendations are proposed for building an expertise- and evidence-based Standard Operating Procedure for injury prevention in lockdown-like contexts for high-level and professional athletes. The following recommendations can be provided: (1) assess the global and sport-specific risks in the light of the ongoing cause of isolation; (2) adapt remote training materials and programs; (3) ensure regular quality communication within the staff, between athletes and the staff as well as between athletes; (4) follow the athlete's mental well-being; and (5) plan for a safe return-to-sports as well as for an ongoing monitoring of the load-recovery balance. These key domains should further be addressed to comply with local policies, which are subject to change over time in each individual country. The use of these recommendations may improve the readiness of athletes, coaches, physicians and all sports stakeholders for future lockdown-like contexts.

11.
Artigo em Inglês | MEDLINE | ID: mdl-33345039

RESUMO

Purpose: Peripheral adaptations, as assessed via near-infrared spectroscopy (NIRS) derived changes in muscle oxygenation (SmO2), are good predictors of sprint kayak performance. Therefore, the goal of the present study was to assess changes in SmO2 and V ˙ O2 following a training camp in elite sprint kayakers to evaluate if the training prescribed elicits peripheral adaptations, and to assess associations between training-induced changes in physiological responses and performance. Methods: Eight male elite sprint kayakers, members of the Canadian National Team, performed a 200-m and 1,000-m on-water time trial (TT) before and after a 3-weeks winter training camp. Change in performance, V ˙ O2 and SmO2 of the biceps brachii were assessed in relation to training load. Results: Training load and intensity were increased by ~20% over the course of the training camp, which resulted in a 3.7 ± 1.7% (ES 1.2) and 2.8 ± 2.4% (ES 1.3) improvement in 200-m and 1,000-m performance, respectively. Performance improvement in the 200-m was concomitant to a reduced SmO2, an increased V ˙ O2 peak and an increased reoxygenation rate after the TT. The 1,000-m TT performance improvement was concurrent with a reduced SmO2 in the last half of the TT and an increased V ˙ O2 in the first minute of the TT. Conclusion: Our results strongly suggest that peripheral skeletal muscle adaptations occurred in these athletes with the proposed training plan. This further attests the benefit of using portable NIRS as a monitoring tool to track training-induced adaptations in muscle oxygen extraction in elite athletes.

12.
Artigo em Inglês | MEDLINE | ID: mdl-33345098

RESUMO

Introduction: Modern tennis players face congested schedules that force the adoption of various recovery strategies. Thus, recovery must be fine-tuned with an accurate quantification of its impacts, especially with regards to training-induced fatigue. The present study aimed to examine the training type clusters and recovery practices adopted by elite tennis players under ecological training conditions. The respective impacts of training type clusters and recovery techniques on subjective variables, which reflect the players' recovery perceptions, were subsequently determined. Methods: During 15 consecutive months, a total of 35 elite tennis players filled out questionnaires to report their daily training load, training session content, adopted recovery modalities after training, and perceived recovery. Results: The hierarchical analysis identified three clusters: "combined tennis and S&C training," "predominant tennis training" and "predominant S&C training." Muscle soreness and perceived fatigue were not significantly different among these three clusters (p = 0.07-0.65). Across the 146 recorded training and recovery sessions, players primarily employed a combination of 2 or 3 modalities, with cooling strategies being the most widely used technique (87.6%). Mixed linear models revealed that independent of training clusters, cooling strategies significantly reduced muscle soreness (Δmuscle soreness: ß = -1.00, p = 0.02). Among the cooling techniques used, whole-body cryotherapy induced a greater perceived recovery than cold-water immersion (p = 0.02). Conclusion: These results showed that perceived recovery was not sensitive to training clusters or the associated acute training load. However, cooling strategies were relevant for the alleviation of tennis training-induced soreness. This study represents an initial step toward a periodized approach of recovery interventions, based on the interactions between training load, training contents, and perceived recovery.

13.
Med Sci Sports Exerc ; 52(12): 2655-2662, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32472928

RESUMO

INTRODUCTION: This study aimed to explore the relationship between elite rugby union match and postmatch sleep architecture and to investigate the effects of a high-heat capacity mattress (MAT) and a whole-body cryotherapy (WBC) session on postmatch sleep architecture. METHODS: Nineteen elite male U23 rugby union players performed in three official matches, followed by three experimental conditions, in a randomized order: MAT, WBC, and no intervention (CONT). Match load was evaluated using GPS trackers and video analyses. Sleep architecture was assessed by polysomnography (PSG). Core body temperature (CBT) and mattress surface temperature were monitored during sleep. Linear mixed-effects models were conducted to assess the effects of each experimental condition on sleep, with match load variables as covariates. RESULTS: A lower wake after sleep onset (ß = -10.5 min, P < 0.01) and higher rapid eye movement sleep proportion (ß = +2.8%, P < 0.05) were reported for MAT compared with CONT. Moreover, lower mean CBT (ß = -0.135°C, P < 0.001) and mean mattress surface temperature (ß = -2.736°C, P < 0.001) during sleep were observed for MAT compared CONT. WBC did not affect nocturnal CBT nor interfere with sleep architecture. For every 100-m increase in high-speed running distance, a higher slow wave sleep (ß = +1.1%, P = 0.05) and lower light sleep proportion (ß = -1.2%, P < 0.05) proportion were observed. Conversely, for every 10 supplementary collisions, lower slow wave sleep (ß = -1.9, P = 0.09) and higher light sleep (ß = +2.9%, P < 0.001) proportion were observed. CONCLUSION: MAT use had a positive effect on sleep architecture after an elite rugby union match, potentially through a more efficient nocturnal heat transfer.


Assuntos
Leitos/normas , Crioterapia/métodos , Futebol Americano/fisiologia , Sono/fisiologia , Temperatura Corporal/fisiologia , Fadiga/fisiopatologia , Sistemas de Informação Geográfica , Frequência Cardíaca/fisiologia , Humanos , Modelos Lineares , Masculino , Polissonografia , Distribuição Aleatória , Corrida/fisiologia , Sono REM/fisiologia , Fatores de Tempo , Adulto Jovem
14.
J Sleep Res ; 29(6): e12964, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31821667

RESUMO

The aim of the present study was to investigate the effects of night-time (21:00 hours) high-intensity, intermittent exercise on sleep architecture among well-trained athletes in a laboratory setting. In a randomized, counterbalanced order, 11 well-trained male runners completed a simulated trail-running exercise (TRAIL) on a motorized treadmill and a resting condition (REST; no exercise during the day). After each condition, nocturnal autonomic nervous system activity and core body temperature (CBT) were measured and sleep was analysed using polysomnography and actigraphy. Markers of muscle damage (maximal voluntary contraction [MVC], plasma creatine kinase concentration [CK] and perceived muscle soreness) were recorded before and immediately (POST), 24 hr (H24) and 48 hr (H48) after exercise. TRAIL induced a high level of fatigue and mild exercise-induced muscle damage, as determined by a reduction in MVC (-9.4%, p < .01, d = -1.36) and increases in [CK] (+176.0%, p < .01, d = 1.49) and perceived muscle soreness (+4.5 UA, p < .01, d = 2.17) compared with REST at H24. A trend for increased non-rapid eye movement (+4.2%; p = .10; d = 0.86) and reduced rapid eye movement (-4.4%; p = .07; d = -0.87) during sleep was observed for TRAIL compared with the REST condition. Moreover, compared with REST, TRAIL significantly increased CBT and nocturnal HR during the first part of the night. In conclusion, sleep architecture was modified after night-time, high-intensity exercise among well-trained runners.


Assuntos
Exercício Físico/fisiologia , Polissonografia/métodos , Corrida/fisiologia , Transtornos do Sono-Vigília/etiologia , Adulto , Humanos , Masculino
15.
Sci Rep ; 9(1): 12013, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31427654

RESUMO

The aim of this study was to investigate the effects of regular post-exercise whole-body cryotherapy (WBC) on physiological and performance adaptations to high-intensity interval training (HIT). In a two-group parallel design, twenty-two well-trained males performed four weeks of cycling HIT, with each session immediately followed by 3 min of WBC (-110 °C) or a passive control (CON). To assess the effects of WBC on the adaptive response to HIT, participants performed the following cycling tests before and after the training period; a graded exercise test (GXT), a time-to-exhaustion test (Tmax), a 20-km time trial (20TT), and a 120-min submaximal test (SM120). Blood samples were taken before and after training to measure changes in basal adrenal hormones (adrenaline, noradrenaline, and cortisol). Sleep patterns were also assessed during training via wrist actigraphy. As compared with CON, the administration of WBC after each training session during four weeks of HIT had no effect on peak oxygen uptake ([Formula: see text]O2peak) and peak aerobic power (Ppeak) achieved during the GXT, Tmax duration and work performed (WTmax), 20TT performance, substrate oxidation during the SM120, basal adrenaline/noradrenaline/cortisol concentrations, or sleep patterns (P > 0.05). These findings suggest that regular post-exercise WBC is not an effective strategy to augment training-induced aerobic adaptations to four weeks of HIT.


Assuntos
Adaptação Fisiológica , Crioterapia , Treinamento Intervalado de Alta Intensidade , Corticosteroides/sangue , Corticosteroides/metabolismo , Adulto , Biomarcadores , Crioterapia/métodos , Metabolismo Energético , Exercício Físico/psicologia , Teste de Esforço , Humanos , Masculino , Consumo de Oxigênio , Sono
16.
Artigo em Inglês | MEDLINE | ID: mdl-33344930

RESUMO

Recent data suggests that peripheral adaptations, i.e., the muscle ability to extract and use oxygen, may be a stronger predictor of canoe-kayak sprint performance compared to VO2max or central adaptations. If maximizing the time near VO2max during high-intensity interval training (HIIT) sessions is believed to optimize central adaptations, maximizing the time near maximal levels of muscle desaturation could represent a critical stimulus to optimize peripheral adaptations. Purpose: Therefore, the purpose of this study was to assess the VO2, muscle oxygenation and cardiac output responses to various HIIT sessions, and to determine which type of HIIT elicits the lowest muscle oxygenation and the longest cumulated time at low muscle O2 saturation. Methods: Thirteen well-trained canoe-kayak athletes performed an incremental test to determine VO2max and peak power output (PPO), and 4 HIIT sessions (HIIT-15: 40x[15 s at 115%PPO, 15 s at 30%PPO]; HIIT-30: 20x[30 s at 115%PPO, 30 s at 30%PPO]; HIIT-60: 6x[1 min at 130%PPO, 3 min rest]; sprint interval training (SIT): 6x[30 s all-out, 3 min 30 rest]) on a canoe or kayak ergometer. Portable near-infrared spectroscopy monitors were placed on the Latissimus dorsi (LD), Biceps brachii (BB), and Vastus lateralis (VL) during every session to assess changes in muscle O2 saturation (SmO2, % of physiological range). Results: HIIT-15 and HIIT-30 elicited a longer time >90%VO2max (HIIT-15: 8.1 ± 6.2 min, HIIT-30: 6.8 ± 4.6 min), compared to SIT (1.7 ± 1.3 min, p = 0.006 and p = 0.035) but not HIIT-60 (4.1 ± 1.7 min). SIT and HIIT-60 elicited the lowest SmO2 in the VL (SIT: 0 ± 1%, HIIT-60: 8 ± 9%) compared to HIIT-15 (26 ± 12%, p < 0.001 and p = 0.007) and HIIT-30 (25 ± 12%, p < 0.001 and p = 0.030). SIT produced the longest time at >90% of maximal deoxygenation in all 3 muscles, with effect sizes ranging from small to very large. Conclusions: Short HIIT performed on a canoe/kayak ergometer elicits the longest time near VO2max, potentially conducive to VO2max improvements, but SIT is needed in order to maximize muscle deoxygenation during training, which would potentially conduct to greater peripheral adaptations.

17.
Int J Sports Physiol Perform ; 13(10): 1299-1307, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29745773

RESUMO

PURPOSE: To characterize the relationships between muscle oxygenation and performance during on- and off-water tests in highly trained sprint canoe-kayak athletes. METHODS: A total of 30 athletes (19 kayakers and 11 canoeists) performed a maximal incremental test on a canoe or kayak ergometer for determination of VO2max and examination of the relation between peak power output (PPO) and physiological parameters. A subset of 21 athletes also performed a 200- and a 500- (for women) or 1000-m (for men) on-water time trial (TT). Near-infrared spectroscopy monitors were placed on the latissimus dorsi, biceps brachii, and vastus lateralis during all tests to assess changes in muscle O2 saturation (SmO2) and deoxyhemoglobin concentration ([HHb]). The minimum O2 oxygenation (SmO2min) and maximal O2 (Δ[HHb] extraction) were calculated for all subjects. RESULTS: PPO was most strongly correlated with VO2max (R = .9), but there was also a large correlation between PPO and both SmO2min and Δ[HHb] in latissimus dorsi (R = -.5, R = .6) and vastus lateralis (R = -.6, R = .6, all P < .05). Multiple regression showed that 90% of the variance in 200-m performance was explained by both Δ[HHb] and SmO2min in the 3 muscles combined (P < .01) and 71% of the variance in 500-/1000-m performance was explained by Δ[HHb] in the 3 muscles (P < .01). This suggests that O2 extraction is a better predictor of performance than VO2max in sprint canoe-kayak. CONCLUSIONS: These results highlight the importance of peripheral adaptations in both short and long events and stress the relevance of adding muscle oxygenation measurements during testing and racing in sprint canoe-kayak.

18.
J Strength Cond Res ; 32(7): 1882-1891, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29528955

RESUMO

Delextrat, A, Gruet, M, and Bieuzen, F. Effects of small-sided games and high-intensity interval training on aerobic and repeated sprint performance and peripheral muscle oxygenation changes in elite junior basketball players. J Strength Cond Res 32(7): 1882-1891, 2018-The aim of the current study was to compare the effects of 6 weeks of small-sided game (SSG) and high-intensity interval training (HIIT) on aerobic fitness and muscle oxygenation during a repeated sprint (RS) sequence in elite male junior basketball players. Twenty participants (14.3 ± 0.5 years; 176.8 ± 12.5 cm; 74.5 ± 9.8 kg) performed pre- and post-tests interspersed by 6 weeks of SSG or HIIT training. Testing sessions consisted of the 30-15 intermittent fitness test and an RS sequence (2 bouts of 15 seconds). During RS, muscle oxygenation parameters (tissue saturation index [TSI, %], postsprint muscle reoxygenation rate) were measured using near-infrared spectroscopy. The results showed that both training interventions similarly improved maximal aerobic speed (VIFT, 3.4 and 4.1%, respectively, for HIIT and SSG, P < 0.05) as well as RS ability (smaller percentage decrement by 62.5 and 21.6%, respectively, for HIIT and SSG, P < 0.05). Both training interventions also resulted in a greater ΔTSI during the second sprint (47.8-114%, P < 0.05) and significant improvements in postsprint reoxygenation after both sprints (+23.0 to +107.7%). Finally, the variation in muscle reoxygenation after sprint 1 was significantly associated with improvements in aerobic (ΔVIFT, r = 0.61, P = 0.008) and anaerobic (Δ% Dec during RS, r = -0.487, P = 0.028) performances. The current study has observed that SSG and HIIT resulted in similar improvements in aerobic and anaerobic variables and a better muscle oxygenation capacity during RS. Coaches should be aware that both trainings are applicable methodologies to improve in-season aerobic and anaerobic fitness capacities in junior basketball players.


Assuntos
Basquetebol/fisiologia , Treinamento Intervalado de Alta Intensidade , Músculo Esquelético/fisiologia , Aptidão Física/fisiologia , Corrida/fisiologia , Adolescente , Desempenho Atlético/fisiologia , Teste de Esforço , Humanos , Masculino , Músculo Esquelético/metabolismo , Oxigênio/metabolismo
19.
Int J Sports Physiol Perform ; 12(2): 152-160, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27139812

RESUMO

PURPOSE: To investigate the effect of different limb blood-flow levels on cycling-performance recovery, blood lactate concentration, and heart rate. METHODS: Thirty-three high-intensity intermittent-trained athletes completed two 30-s Wingate anaerobic test sessions, 3 × 30-s (WAnT 1-3) and 1 × 30-s (WAnT 4), on a cycling ergometer. WAnT 1-3 and WAnT 4 were separated by a randomly assigned 24-min recovery intervention selected from among blood-flow restriction, passive rest, placebo stimulation, or neuromuscular electrical-stimulation-induced blood flow. Calf arterial inflow was measured by venous occlusion plethysmography at regular intervals throughout the recovery period. Performance was measured in terms of peak and mean power output during WAnT 1 and WAnT 4. RESULTS: After the recovery interventions, a large (r = .68 [90% CL .42; .83]) and very large (r = .72 (90% CL .49; .86]) positive correlation were observed between the change in calf arterial inflow and the change in mean and peak power output, respectively. Calf arterial inflow was significantly higher during the neuromuscular-electrical-stimulation recovery intervention than with the blood-flow-restriction, passive-rest, and placebo-stimulation interventions (P < .001). This corresponds to the only intervention that allowed performance recovery (P > .05). No recovery effect was linked to heart rate or blood lactate concentration levels. CONCLUSIONS: For the first time, these data support the existence of a positive correlation between an increase in blood flow and performance recovery between bouts of high-intensity exercise. As a practical consideration, this effect can be obtained by using neuromuscular electrical stimulation-induced blood flow since this passive, simple strategy could be easily applied during short-term recovery.


Assuntos
Desempenho Atlético/fisiologia , Ciclismo/fisiologia , Extremidade Inferior/irrigação sanguínea , Extremidade Inferior/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Adulto , Método Duplo-Cego , Estimulação Elétrica , Frequência Cardíaca/fisiologia , Humanos , Ácido Láctico/sangue , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiologia , Adulto Jovem
20.
J Evid Based Med ; 9(1): 43-44, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26779801

RESUMO

Delayed-onset muscle soreness, or 'DOMS', affects many people after exercise and can impair future performance. It usually peaks one to four days after exercise and several strategies are used to overcome it. The effectiveness and safety of many of these strategies applied and promoted is unknown. This article is protected by copyright. All rights reserved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...